If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5t^2+30t-15=0
a = 5; b = 30; c = -15;
Δ = b2-4ac
Δ = 302-4·5·(-15)
Δ = 1200
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1200}=\sqrt{400*3}=\sqrt{400}*\sqrt{3}=20\sqrt{3}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(30)-20\sqrt{3}}{2*5}=\frac{-30-20\sqrt{3}}{10} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(30)+20\sqrt{3}}{2*5}=\frac{-30+20\sqrt{3}}{10} $
| X-2*16=12*x | | X-y=-32 | | 2x/7x=180 | | 3x2-24x+75=0 | | 8(12x-10)=210 | | 4y-9=108 | | 3x5-3x=0 | | 9y+10=-10 | | 5x+1-2x+15=22 | | (4x+18)=(10x-6) | | 56a+70=153a+153 | | 56a+70=17a+9 | | 67-9z=2(z-5) | | 4u+16=7u-14 | | 81a+81=80a+80 | | 81a81=80a+80 | | x+x+8+x+13=72 | | 3x+22=72 | | 14+4y=8y+4 | | 7x-10=8x-1 | | 3w+13=8w+28 | | 8v+4=3v+29 | | 4u+16=7u-15 | | 5(5g-20)=60 | | 16=30-2f | | 26-4c=10 | | 29-2b=19 | | 4a+16=24 | | 5+5x=44x+8 | | (3y+33)=(9y+21) | | (2x+42)=(10x-6) | | (2y+38)=(9y-39) |